CAPITULO 5. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA

5.1 MEDIO ABIÓTICO

5.1.7 CALIDAD DEL AGUA

COMPLEMENTO DEL ESTUDIO DE IMPACTO AMBIENTAL- MODIFICACIÓN 2 LICENCIA AMBIENTAL RESOLUCIÓN No. 170 / 2021-INFORMACIÓN ADICIONAL

Proyecto Segundo refuerzo de red en el área oriental: Línea de transmisión La Virginia – Nueva Esperanza 500 kV

UPME 07 2016

TCE-ET2W-GPB00-0003-1

Control de Cambios SMAYD LTDA							
FECHA 31/01/2022 01/10/2022	VERSIÓN V0 VF	DESCRIPCIÓN Versión inicial Versión final					
ELABORADO POR: Grupo interdisciplinario SMAYD LTDA	REVISADO POR: A. Fajardo Control de Revisiones TCE	APROBADO POR: A. Fajardo					
	Control de Revisiones ICE						
FECHA	VERSIÓN	DESCRIPCIÓN					
02/10/2022	VF	VF					
ELABORADO POR: SMAYD LTDA	REVISADO POR: L. Montenegro	APROBADO POR: E. Bordignon					

Proyecto Segundo refuerzo de red en el área oriental: Línea de transmisión La Virginia – Nueva Esperanza 500 kV - UPME 07 2016.

CONTENIDO

5. CARA	ACTERIZACIÓN DEL ÁREA DE INFLUENCIA	5
5.1 Medi	o abiótico	5
5.1.7 Cal	idad del agua	5
5.1.7.1	Calidad del Agua Superficial	6
5.1.7.1.1	Caracterización fisicoquímica y bacteriológica	6
5.1.7.1.2	Trabajo de campo y de laboratorio (muestreo fisicoquímico y bacteriológico)	10
5.1.7.1.3	Resultados muestreo fisicoquímico y bacteriológico	11
5.1.7.1.4	Análisis de resultados de los parámetros fisicoquímicos y bacteriológicos evaluados	12
5.1.7.1.5	Resultados Índices de Calidad de Agua Superficial	13

Proyecto Segundo refuerzo de red en el área oriental: Línea de transmisión La Virginia – Nueva Esperanza 500 kV - UPME 07 2016.

ÍNDICE DE TABLAS

Tabla 5-1 Método utilizado para parámetros fisicoquímicos y bacteriológicos agua superficial	5
Tabla 5-2 Ubicación geográfica de las estaciones monitoreadas en campo para análisis fisicoquímio bacteriológico de aguas superficiales	
Tabla 5-3 Descripción puntos de muestreo MA1 y MA2	8
Tabla 5-4 Descripción puntos de muestreo MA3 y MA4	9
Tabla 5-5 Variables evaluadas, tipo de muestreo y método de preservación de las muestras	10
Tabla 5-6 Técnica analítica utilizada en la determinación de los parámetros fisicoquímicos y bacteriológicos.	10
Tabla 5-7 Resultados de los Parámetros fisicoquímicos- bacteriológicos	11
Tabla 5-8 Variables del ICA y sus ponderaciones	14
Tabla 5-9 Calificación de la calidad del agua	16
Tabla 5-10 MA1 Quebrada <i>San Juan</i> Vereda Chicaque	17
Tabla 5-11 MA4 Captación <i>Comunidad</i> Vereda Chicaque	17
Tabla 5-12 Índice de calidad de agua (ICA)	17
Tabla 5-13 Variables fisicoquímicas y bacteriológicas tenidas en cuenta	18
Tabla 5-14 Interpretación resultado de índices	18
Tabla 5-15 Índice de contaminación del agua (ICOSUS)	20
Tabla 5-16 Rangos de valores para índice IACAL	21
Tabla 5-17 Rangos de valores que puede tomar IACALDBO	22
Tabla 5-18 Rangos de valores que puede tomar IACALDQO	22
Tabla 5-19 Rangos de valores que puede tomar IACAL _{SST}	22
Tabla 5-20 Rangos de valores que puede tomar IACAL _{NT}	23
Tabla 5-21 Rangos de valores que puede tomar IACAL _{PT}	23
Tabla 5-22 Oferta hídrica	23
Tabla 5-23 Categorías IACAL para año medio	23
Tabla 5-24 Categorías IACAL para año seco	24
Tabla 5-25 Calificación IACAL año Medio y Seco	24

Proyecto Segundo refuerzo de red en el área oriental: Línea de transmisión La Virginia – Nueva Esperanza 500 kV - UPME 07 2016.

ÍNDICE DE FIGURAS

Figura 5	5-1	Puntos	de monitored	de aguas	s superficiales	7
----------	-----	--------	--------------	----------	-----------------	---

ÍNDICE DE ANEXOS

A5.1.7 Calidad del Agua / Reportes de Laboratorio

Transmisora Colombiana de Energia S.A.S. E.S.P.

Proyecto Segundo refuerzo de red en el área oriental: Línea de transmisión La Virginia – Nueva Esperanza 500 kV - UPME 07 2016.

5. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA

5.1 Medio abiótico

5.1.7 Calidad del agua

El presente informe relaciona la caracterización de calidad de agua (propiedades fisicoquímicas y bacteriológicas) de algunas de las corrientes de agua superficiales presentes el área de influencia contemplada para la Solicitud de la Modificación No. 2 de Licencia Ambiental otorgada mediante Resolución No. 170 del 15 de enero de 2021 y confirmada mediante Resolución No. 1363 del 04 de agosto de 2021, denominada ahora «Modificación No. 2», perteneciente al Proyecto UPME 07-2016 «Segundo Refuerzo de Red en el Área Oriental: Línea de transmisión La Virginia – Nueva Esperanza 500 kV» el proyecto UPME 07 de 2016. Es válido resaltar que ninguna de las fuentes hídricas presentes en el área de influencia del proyecto, incluyendo las que fueron monitoreadas serán intervenidas por el proyecto mediante captaciones, vertimientos u ocupaciones de cauce.

Las fuentes de aguas superficiales que hacen parte de la presente caracterización corresponden a sistemas de naturaleza lótica, los cuales fueron monitoreados el 14 de febrero de 2022 en los municipios de San Antonio del Tequendama y Soacha por los que atraviesa el área de influencia del proyecto para la modificación No 2.

La evaluación de los resultados fisicoquímicos y bacteriológicos consistió, en la estimación del índice de calidad del agua (ICA) de 6 parámetros IDEAM y el índice de contaminación de agua por solidos suspendidos (ICOSUS) esto con el fin de conocer el estado actual del recurso hídrico de la zona de interés.

Los monitoreos fueron realizados por un laboratorio acreditado por el IDEAM, en el mes de febrero de 2022. Los respectivos informes de laboratorio que soportan el presente documento pueden ser consultados en el Anexo 5.1.7 Calidad del agua. En la Tabla 5-1, se indica la información correspondiente a las pruebas fisicoquímicas y bacteriológicas efectuadas en las estaciones de muestreo y su técnica analítica de determinación.

Tabla 5-1 Método utilizado para parámetros fisicoquímicos y bacteriológicos agua superficial

ITEM		PARAMETRO	MÉTODO	TÉCNICA	UNIDAD	LÍMITE DE CUANTIFICACIÓN
78	а	Aceites y Grasas	SM 5520C	Partición – Infrarrojo	mg/L	1
1552	а	Alcalinidad Total	SM 2320 B	Volumetría	mg CaCO3/L	10
33	а	Caudal –Aforo Volumétrico	Procedimiento interno	Volumetría	L/s	-
15338	b	Coliformes fecales (Termotolerantes)	SM 9223 B modificado	Sustrato Enzimático Multicelda	NMP/100 mL	1
15327	b	Coliformes Totales (NMP)	SM 9223 B	Sustrato Enzimático Multicelda	NMP/100 mL	1
3344	а	Conductividad Eléctrica a 25 °C	SM 2510 B	Electrométrico	uS/cm	-
4367	b	DBO (5 días)	SM 5210 B, 4500-O G	Incubación 5 días y Electrodo de 35membrana	mg/L	6
59	а	Demanda Química de Oxígeno	SM 5220 C	Reflujo Cerrado, Volumetría	mg/L	35
794	а	Dureza Total	SM 2340 C	Volumetría	mg CaCO3/L	7

Transmisora Colombiana de Energia S.A.S. E.S.P.

Proyecto Segundo refuerzo de red en el área oriental: Línea de transmisión La Virginia – Nueva Esperanza 500 kV - UPME 07 2016.

ITEM		PARAMETRO	MÉTODO	TÉCNICA	UNIDAD	LÍMITE DE CUANTIFICACIÓN
2906	а	Fósforo Total	SM 4500-P, B,E	Preparación de la Muestra – Ácido Ascórbico	mg P/L	0.05
5328	а	Macroinvertebrados bentónicos	SM 10500 B,C, Cap 7, 2nd ed. EPA 841 –B – 99- 002; GTC 25: 1995	Identificación y conteo	Individuo/m2	-
4979	b	Nitrógeno Total	EN 12260, 2003	-	mg N/L	0.5
15762	а	Nitrogeno Kjeldahl	SM 4500-Norg C, 4500-NH3 B,C	Semi-Micro- Kjeldahl y Destilación - Volumetrico	mg N-NH3/L	4
15461	а	Oxígeno Disuelto	ASTM D 888-12 e-1, C	Electrodo de membrana	mg/L – O2	-
118	а	рН	SM 4500 H+ B	Electrométrico	Unidades de pH	-
733	а	Sólidos Sedimentables	SM 2540 F	Cono Imhoff – Volumétrico	mL/L	0.1
1093	а	Sólidos Suspendidos	SM2540 D	Gravimétrico (Secado a 103 – 105°C)	mg/L	10
648	а	Temperatura	SM 2550 B	Electrométrico	°C	-
15454	а	Turbidez	SM 2130 B	Turbidimetría	NTU	-

a. Parámetro acreditado en S.G.I. S.A.S Resolución Nº 1614 del 23 de diciembre de 2021 IDEAM

Fuente: S.G.I. S.A.S., 2022

5.1.7.1 Calidad del Agua Superficial

5.1.7.1.1 Caracterización fisicoquímica y bacteriológica

Se realizó inicialmente un reconocimiento previo en campo con el fin de definir los cuerpos de agua, los sitios de captaciones y tanques para consumo humano en el área de influencia del proyecto a monitorear teniendo en cuenta la cartografía base, la hidrología de la zona, el recorrido en campo por el área de interés y la importancia ambiental de los cuerpos de agua en la zona de acuerdo a su naturaleza (lóticos o lénticos), su condición de estacionalidad (permanentes o intermitentes), su afectación o intervención actual (captaciones, vertimientos, cruces con alcantarillas, puentes, etc.) y su aprovechamiento en la zona por parte de la comunidad residente (uso del recurso para cultivos, ganadería, etc.).

En la Tabla 5-2, se resume la información de fecha, hora, coordenadas y ubicación geográfica del muestreo de calidad de agua en los puntos seleccionados. Consecuentemente, en la Figura 5-1 se presenta la ubicación de estos puntos.

Tabla 5-2 Ubicación geográfica de las estaciones monitoreadas en campo para análisis fisicoquímico y bacteriológico de aguas superficiales

PUNTO DE	550114	HODA	L COALIZACIÓN	COORDENADAS	S PLANAS MAGNA- RGAS	MUNICIPIO /	
MUESTREO	FECHA	HORA	LOCALIZACIÓN	ESTE	NORTE	DEPARTAMENTO	
MA1	14/02/22	2:12 PM	Quebrada <i>San</i> <i>Juan</i> Vereda Chicaque	4824297.9567	2066377.7622	San Antonio del Tequendama/ Cundinamarca	

b. Parámetro acreditado laboratorio Subcontratado

Proyecto Segundo refuerzo de red en el área oriental: Línea de transmisión La Virginia – Nueva Esperanza 500 kV - UPME 07 2016.

PUNTO DE	FECHA	FECHA HORA	LOCALIZACIÓN		S PLANAS MAGNA- RGAS	MUNICIPIO/
MUESTREO	MUESTREO FECHA		HORA EOCALIZACION		NORTE	DEPARTAMENTO
MA2	14/02/22	12:00 PM	<i>Drenaje</i> Vereda Cascajal	4856003.1041	2067075.4448	Soacha/ Cundinamarca
МАЗ	14/02/22	11:50 PM	<i>Drenaje</i> predio EMGESA	4857409.0065	2062736.0417	Soacha/ Cundinamarca
MA4	21/02/22	4:55 PM	Captación comunidad vereda Chicaque	4855105,0000	2066348,0000	San Antonio del Tequendama/ Cundinamarca

Fuente: SMAYD Ltda. 2022

4.853.000 4.856.000 4.859.000 Puntos de muestreo de agua superficial 4.859,000 UBICACIÓN GENERAL 4.856.000 **CONVENCIONES GENERALES** Infraestructura del proyecto Unidades territoriales Convenciones Generales Veredas Área de Influencia Geosférico Torres Modificación 2 Municipio Vias generales Vias del provecto -- Drenaje Sencillo Drenaje doble

Figura 5-1 Puntos de monitoreo de aguas superficiales

Proyecto Segundo refuerzo de red en el área oriental: Línea de transmisión La Virginia – Nueva Esperanza 500 kV - UPME 07 2016.

A continuación, se realiza una descripción de los puntos monitoreados, registrando las principales características morfológicas e hidrológicas, las coordenadas planas de ubicación del punto de monitoreo, el municipio, el departamento, el código de identificación de muestra y el tipo de muestra, adicionalmente se presenta un registro fotográfico del estado del punto de muestreo (Tabla 5-3 a la Tabla 5-4).

	Tabla 5-3 Descripción puntos de muestreo MA1 y MA2							
NOMBRE:		MA1/ QUEBRADA SAN J	UAN VEREDA CHICAQUE					
Tipo de muestra		Natural lotico						
	X	4824297.9567						
	Y	2066377.7622						
Coordenadas	Municipio	San Antonio del Tequendama (Vereda Chicaque)						
	Departamento	Cundinamarca						
Descripción del punto de monitoreo	El cuerpo de ag con gran follaje. Cuerpo de agua							
NOMBRE		MA2 / DRENAJE V	'EREDA CASCAJAL					
Tipo de muestra		Natural lotico						
	X	4856003.1041						
Coordenadas	Y	2067075.4448						
Coordenadas	Municipio	Soacha (Vereda Cascajal)						
	Departamento	Cundinamarca						
Descripción del punto de monitoreo	No se evidencia flujo de agua en el punto de monitoreo, es un punto seco. Cuerpo de agua intermitente.							

Fuente: SGI S.A.S.,2022

Transmisora Colombiana

Proyecto Segundo refuerzo de red en el área oriental: Línea de transmisión La Virginia – Nueva Esperanza 500 kV - UPME 07 2016.

Tabla 5-4 Descripción puntos de muestreo MA3 y MA4

NOMBRE:	Tabla	i-4 Descripción puntos de mu MA3/ <i>DRENAJE</i>	PREDIO EMGESA
Tipo de muestra		Natural lotico	
	Norte	4857409.0065	
	Este	2062736.0417	
Coordenadas	Municipio	Soacha (Vereda Canoas)	
	Departamento	Cundinamarca	
Descripción del punto de monitoreo		cia de agua en el punto (seco), hay ndante alrededor y rocas. a intermitente.	
NOMBRE		MA4 / CAPTACIÓN <i>COM</i> U	UNIDAD VEREDA CHICAQUE
Tipo de muestra	Agı	ua para uso doméstico	
	X	4855105,0000	
0	Y	2066348,0000	
Coordenadas	Municipio	San Antonio del Tequendama (Vereda Chicaque)	
	Departamento	Cundinamarca	
Descripción del punto de monitoreo	punto de Cuerpo de agua permanente hasta el sitio de		

Fuente: SGI S.A.S.,2022

Transmisora Colombiana de Energia S.A.S. E.S.P.

Proyecto Segundo refuerzo de red en el área oriental: Línea de transmisión La Virginia – Nueva Esperanza 500 kV - UPME 07 2016.

5.1.7.1.2 Trabajo de campo y de laboratorio (muestreo fisicoquímico y bacteriológico)

Durante el trabajo de campo se realizaron tomas de muestras puntuales de agua superficial, teniendo en cuenta los requerimientos de preservación y transporte para cada parámetro a analizar. Así mismo, se llevaron a cabo mediciones in situ de parámetros como: temperatura, pH, conductividad y oxígeno disuelto. En la Tabla 5-5, se resume la información correspondiente al trabajo de campo realizado, indicando el tipo de preservación, envase utilizado y tiempo máximo de análisis para los parámetros a caracterizar.

Tabla 5-5 Variables evaluadas, tipo de muestreo y método de preservación de las muestras

Table 0 Tal	labice evaluadas,	tipe de macetree	co y metodo de preservación de las maestras		
PARÁMETRO	TIPO DE RECIPIENTE	VOLUMEN MÍNIMO (ML)	PRESERVACIÓN	TIEMPO MÁXIMO DE ANÁLISIS	
Sólidos Suspendidos Totales	Plástico o vidrio	200	Refrigerar	7 días	
Sólidos sedimentables	Plástico o vidrio	1000	Refrigerar	7 días	
Temperatura	N/A	-	Analizar de inmediato	15 minutos	
рН	Plástico o vidrio	50	Analizar de inmediato	2 horas	
DQO	Plástico o vidrio	100	Agregar H2SO4 hasta pH<2 y refrigerar	28 días	
DBO (5 días)	Plástico o vidrio	100	Refrigerar ≤ 6°C Agregar H2SO4 hasta pH<2	28 días	
Aceites y Grasas	Vidrio de boca ancha	1000	Agregar HCl hasta pH<2 y refrigerar	28 días	
Alcalinidad total	Plástico o vidrio	200	Refrigerar	24 horas	
Dureza total	Plástico o vidrio	100	Agregar HNO3 hasta pH<2	6 meses	
Oxígeno disuelto	Vidrio, botella Winkler	300	Analizar de inmediato	30 minutos	
Conductividad eléctrica	Plástico o vidrio	500	Refrigerar	28 días	
Coliformes Totales	Vidrio	250	Material estéril Refrigerar ≤ 6°C	6 horas	
Coliformes Fecales	Vidrio	250	Material estéril Refrigerar ≤ 6°C	6 horas	
Fósforo total	Plástico o Vidrio	250	Refrigerar ≤ 6°C-Agregar H2SO4 hasta pH<2	28 días	
Nitrogeno total	Plástico	250	Refrigerar ≤ 6°C-Agregar H2SO4 hasta pH<2	28 días	
Turbidez	Plástico	1000	Refrigerar	7 días	

Fuente: SGI S.A.S., 2018

Posterior a la toma y envío de muestras al laboratorio, se procedió al análisis de estas, para cada uno de los parámetros físicos-químicos y bacteriológicos de interés, a partir de los métodos y técnicas analíticas que se indican en la Tabla 5-6.

Tabla 5-6 Técnica analítica utilizada en la determinación de los parámetros fisicoquímicos y bacteriológicos

UNIDAD	DESCRIPCIÓN	MÉTODO ANALÍTICO	in-situ	LABORATORIO
Unidades de pH	рН	SM 4500-H+ B	Х	
°C	Temperatura	SM 2550 B	Х	
mg/L - O2	Oxígeno disuelto, electrodo	EPA 360-3	Х	
μS/cm	Conductividad Eléctrica a 25 °C	SM 2510 B	Х	
mg/L	Sólidos Suspendidos Totales	SM 2540 D		Х
mL/L	Sólidos sedimentables	SM 2540 F		X

Proyecto Segundo refuerzo de red en el área oriental: Línea de transmisión La Virginia – Nueva Esperanza 500 kV - UPME 07 2016.

UNIDAD	DESCRIPCIÓN	MÉTODO ANALÍTICO	in-situ	LABORATORIO
mg/L	DBO (5 días)	SM 5210 B, 4500-O G		Х
mg/L	DQO	SM 5220 D		X
mg/L	Aceites y Grasas	SM 5520 C		Х
Mg P/L	Fósforo Total	SM 4500-PB,E		X
mg CaCO3/L	Alcalinidad Total	SM 2320 B		Х
mg CaCO3/L	Dureza total	SM 2340 C		X
NTU	Turbidez	Nefelométrico		Х
mg N-mg/L	Nitrógeno total	Calculo		X
NMP/100 ml	Coliformes Totales	SM 9223 B		Х
NMP/100 ml	Coliformes Fecales	SM 9223 B		X

Fuente: SGI S.A.S., 2018

5.1.7.1.3 Resultados muestreo fisicoquímico y bacteriológico

Los resultados del muestreo realizado en el área de influencia para la Solicitud de la Modificación No. 2 de Licencia Ambiental otorgada mediante Resolución No. 170 del 15 de enero de 2021 y confirmada mediante Resolución No. 1363 del 04 de agosto de 2021, denominada ahora «Modificación No. 2», perteneciente al Proyecto UPME 07-2016 «Segundo Refuerzo de Red en el Área Oriental: Línea de transmisión La Virginia – Nueva Esperanza 500 kV» el proyecto UPME 07 de 2016. se obtuvieron en total 2 muestras para análisis fisicoquímico (Tabla 5-7).

Tabla 5-7 Resultados de los Parámetros fisicoquímicos- bacteriológicos

CÓDIGO DE MUESTRA		MA1	MA4
FECHA DE TOMA DE MUESTRA		14/02/2022	21/02/2022
HORA DE TOMA DE MUESTRA		02:12 PM	04:55 PM
COORDENADA		X: 4824297.95666	X: 4855105
COORDENADA		Y: 2066377.76222	Y: 2066348
PARÁMETRO	UNIDADES	MA1 - QUEBRADA <i>SAN</i> <i>JUAN</i> VEREDA CHICAQUE	MA4 CAPTACIÓN COMUNIDAD VEREDA CHICAQUE
Aceites y Grasas	mg/L	2.23	
Alcalinidad total	mg CaCO3/L	11.66	
Caudal	L/s	0.017	1.61
Coliformes Fecales (Termotolerantes)	NMP/100 mL	<1	
Coliformes Totales (NMP)	NMP/100 mL	<1	
Conductividad Eléctrica a 25°C	μS/cm	96.8	58
DBO (5 días)	mg/L	51	1
Demanda Química de Oxigeno	mg/L	76.45	<35.00
Dureza total	mg CaCO3/L	31.66	-
Fósforo total	mg P/L	<0.2	0.36
Nitrógeno Kjeldahl	mg N-NH3/L		<4.00
Macroinvertebrados bentónicos	Individuo/m2		

Transmisora Colombiana de Energia S.A.S.E.S.P.

Proyecto Segundo refuerzo de red en el área oriental: Línea de transmisión La Virginia – Nueva Esperanza 500 kV - UPME 07 2016.

CÓDIGO DE MUESTRA		MA1	MA4
FECHA DE TOMA DE M	JESTRA	14/02/2022	21/02/2022
HORA DE TOMA DE MU	JESTRA	02:12 PM	04:55 PM
COORDENADA		X: 4824297.95666	X: 4855105
COORDENADA		Y: 2066377.76222	Y: 2066348
PARÁMETRO	UNIDADES	MA1 - QUEBRADA <i>SAN</i> <i>JUAN</i> VEREDA CHICAQUE	MA4 CAPTACIÓN COMUNIDAD VEREDA CHICAQUE
Nitrógeno Total	mg N- mg/L	0.6	1.1
Oxígeno Disuelto	mg/L - O2	4.95	5.2
рН	Unidades de pH	7.8	7.24
Sólidos Suspendidos Totales	mg/L	<10	13
Sólidos sedimentables	mL/L	<0.1	
Temperatura	°C	12.2	
Turbidez	NTU	0.18	

Fuente: SGI S.A.S., 2022.

5.1.7.1.4 Análisis de resultados de los parámetros fisicoquímicos y bacteriológicos evaluados

Las diferentes determinaciones de concentraciones obtenidas a partir de los análisis de laboratorio se expresaron en las unidades de medida respectivas y se presentaron en tablas.

a. Parámetros in situ

pH

Durante el muestreo realizado se tomó información de parámetros *in situ*, entre los que se encuentran el pH, este parámetro es relevante El **pH** es una abreviatura para representar el potencial de hidrogeniones del agua, estando íntimamente relacionado con los cambios de acidez, basicidad y con la alcalinidad. Es de mencionar que en general este parámetro puede ser modificado por actividad biológica o por intercambio de CO₂ con el aire (Roldán, 2003). Así, las aguas naturales pueden tener pH ácidos por el CO₂ disuelto desde la atmósfera o proveniente de los seres vivos; o por ácido sulfúrico procedente de algunos minerales. En cuanto al pH, la presencia de carbonatos, fosfatos y de iones similares confieren al agua un efecto tampón, de modo que, si se adiciona un ácido o una base en tales condiciones, no causa mayor efecto en el pH (Londoño, 2006).

Este parámetro presentó una variación entre los dos puntos monitoreados con pH 7.8 u. de pH levemente básico en la quebrada San Juan Vereda Chicaque (MA1) con respecto al punto de Captación Comunidad Vereda Chicaque (MA4) con pH 7.24 unidades de pH más cercano a la neutralidad.

Conductividad

La conductividad indica la capacidad del agua para conducir la electricidad siendo un indicativo indirecto de la presencia de sales y sólidos disueltos. En este orden de ideas este parámetro en las aguas naturales se puede ver influenciado por diferentes condiciones del terreno como la solubilidad de las rocas y las sales presentes en el suelo aledaño a los cuerpos de agua. Las muestras analizadas presentan valores de conductividad de 96.8 y 58 µS/cm, para los puntos MA1 y MA4 respectivamente indicando mayor contenido de sales y solidos disueltos en la quebrada *San Juan* que pueden ser producto de las condiciones geológicas.

Transmisora Colombiana de Enerría S.A.S. F.S.P.

Proyecto Segundo refuerzo de red en el área oriental: Línea de transmisión La Virginia – Nueva Esperanza 500 kV - UPME 07 2016.

Oxígeno Disuelto

El Oxígeno Disuelto (O.D.) es uno de los indicadores más importantes de calidad del agua. La fuente principal de O.D. es el aire, el cual se difunde rápidamente en el agua por la turbulencia en los ríos y por el viento en los lagos (Roldán, 2003). Otras fuentes de oxígeno son la precipitación pluvial, la fotosíntesis, los afluentes y la agitación moderada (Roldán y Ramírez, 2008). En general las aguas superficiales limpias suelen estar saturadas de oxígeno, lo que es fundamental para la vida. Si el nivel de oxígeno disuelto es bajo, indica contaminación con materia orgánica, mala calidad del agua e incapacidad para mantener determinadas formas de vida.

El OD en el punto de monitoreo MA4 cumple con el límite permisible definido en la Resolución 0330 de 2017 del para consumo humano con valor reportado de 5.2 mg O2/L. Para el punto de monitoreo MA1 se reporta un valor de 4.95 mg O2/L, el cual afecta la preservación de la fauna y flora.

Solidos Suspendidos Totales - SST

Los Sólidos Suspendidos totales representan los sólidos que no pueden ser sedimentados, en el monitoreo, las muestras ubicadas en el departamento en el municipio San Antonio del Tequendama, vereda Chicaque reportan valores: menor a 10 mg/L para MA1 y 13 mg/L para MA4 evidenciando que la cantidad de SST encontrados en dichos puntos de monitoreo no son significativos.

b. Parámetros fisicoquímicos de laboratorio

DQO

Para el presente estudio, la demanda bioquímica de oxígeno reportó concentraciones 76.45 mg/L para MA1 y < 35 mg/L para MA4.

Nitrógeno total NT

El nitrógeno total es una medida de todas las formas de nitrógeno que se encuentran en un cuerpo de agua. Las muestras analizadas registran concentración 0.6 mg N/L para MA1 que indica que no se presentan procesos de eutrofización o lavado de suelos fertilizados en el punto de agua monitoreado, mientras que en punto de monitoreo MA4 se reporta 1.1 mg N/L superior al límite de detección, indicando procesos de eutroficación.

Fósforo Total FT

El fosforo total es un indicador de crecimiento biológico en aguas superficiales, evidenciando procesos como la eutroficación. Para los puntos de monitoreo se reportan los valores: <0.2 mg P/L para MA1 y 0.36 mg P/L para MA4, lo que representa baja cantidades de nutrientes aportados, por lo tanto, no se generara crecimiento excesivo de plantas.

5.1.7.1.5 Resultados Índices de Calidad de Agua Superficial

Estos índices son de gran utilidad para establecer la calidad del agua de las corrientes hídricas, debido a que identifica de manera cuantitativa y cualitativa, su potencialidad para usos agropecuarios y de consumo. Para aplicar dicho índice es necesario utilizar datos obtenidos a partir del seguimiento de parámetros de importancia como son: pH, Conductividad, Solidos Suspendidos Totales, Oxígeno Disuelto, Demanda Química de Oxígeno, Nitrógeno total y Fosforo Total. A cada una de estas variables se le asignaron unos factores de acuerdo con su importancia.

Transmisora Colombiana de Energia S.A.S. E.S.P.

Proyecto Segundo refuerzo de red en el área oriental: Línea de transmisión La Virginia – Nueva Esperanza 500 kV - UPME 07 2016.

a. Índice de calidad del agua (ICA)

Este índice es de gran utilidad para establecer la calidad del agua de las corrientes hídricas superficiales, debido a que identifica de manera cuantitativa y cualitativa, su potencialidad para usos agropecuarios y de consumo.

El índice de calidad del agua es un valor numérico que califica en una de cinco categorías la calidad de agua de una corriente superficial, indicando las condiciones fisicoquímicas de la misma ayudando a reconocer problemas de contaminación en un punto determinado en un tiempo específico. Para el cálculo de este índice se emplean los siguientes parámetros Oxígeno Disuelto (OD), Sólidos Suspendidos Totales (SST), Demanda Química de Oxígeno (DQO), Conductividad Eléctrica (CE), pH y/o la relación Nitrógeno Total/ Fosforo Total (NT/NP).

Para calcular el ICA se usa la metodología definida por el IDEAM descrita a continuación, aplicando la siguiente formula sumando todas las variables (IDEAM, 2020).

$$ICA_{njt} = \left(\sum_{i=1}^{n} W_i I_{ikjt}\right)$$

Donde:

 ICA_{njt} Es el Índice de Calidad del Agua de una determinada corriente superficial en la estación de monitoreo de la calidad del agua j en el tiempo t, evaluado con base en n variables.

 W_i Es el ponderador o peso relativo asignado a la variable de calidad i.

 I_{ikjt} Es el valor calculado de la variable i (obtenido de aplicar la curva funcional o ecuación correspondiente), en la estación de monitoreo i, registrado durante la medición realizada k, del período de tiempo t.

n Es el número de variables de calidad involucradas en el cálculo del indicador; n es igual a 5 o 6 dependiendo de la medición del ICA que se seleccione.

A cada una de estas variables involucradas en el cálculo se les asigna un factor de acuerdo con su importancia, tal como se presentan en la Tabla 5-8.

Tabla 5-8 Variables del ICA y sus ponderaciones

VARIABLE	(Unidades)	Peso de importancia 1 (ICA 5 variables)	Peso de importancia 1 (ICA 6 variables)
Oxígeno Disuelto - OD	% Saturación	0.2	0.17
Sólidos Suspendidos Totales - SST	mg/L	0.2	0.17
Demanda Química de Oxígeno - DQO	mg/L	0.2	0.17
Conductividad Eléctrica – CE	uS/cm	0.2	0.17
N total/P total – NT/NP	mg/L	1	0.17
рН	Unidades de pH	0.2	0.15

Fuente: (IDEAM, 2020)

Cada una de las variables tiene una "relación funcional" en la que los niveles de calidad se presentan en las ordenadas (eje y) de cada gráfico y los niveles de calidad de cada variable se disponen en las abscisas (eje x), obteniendo una curva que representa la variación de la calidad del agua respecto a la magnitud de cada contaminante.

Transmisora Colombiana de Energia S.A.S. E.S.P.

Proyecto Segundo refuerzo de red en el área oriental: Línea de transmisión La Virginia – Nueva Esperanza 500 kV - UPME 07 2016.

Cálculo del valor de cada variable

El procedimiento general consiste en ingresar la concentración de la variable de calidad del agua i en la curva funcional correspondiente y estimar el valor I_{ikjt} .

Cada curva indica en la ordenada el subíndice de la variable de calidad del agua en una escala de 0 a 1; en la abscisa se registran las concentraciones de la variable en particular que pueden indicar afectación en las condiciones de la calidad del agua.

Oxígeno disuelto OD

Esta variable tiene el papel biológico fundamental de definir la presencia o ausencia potencial de especies acuáticas.

Inicialmente se calcula el porcentaje de saturación de oxígeno disuelto

$$PS_{OD} = \frac{Ox * 100}{C_P}$$

Donde:

Ox: Es el oxígeno disuelto medido en campo (mg/l) asociado a la elevación, caudal y capacidad de reoxigenación.

 C_P : Es la concentración de equilibrio de oxígeno (mg/l), a la presión no estándar, es decir, oxígeno de saturación.

Una vez calculado el porcentaje de saturación de oxígeno disuelto, el subíndice del oxígeno disuelto I_{OD} se calcula con la fórmula:

$$I_{OD} = 1 - (1 - 0.01 * PS_{OD})$$

Sólidos suspendidos totales SST

La presencia de sólidos en suspensión en los cuerpos de agua indica cambio en el estado de las condiciones hidrológicas de la corriente. Dicha presencia puede estar relacionada con procesos erosivos, vertimientos industriales, extracción de materiales y disposición de escombros. Tiene una relación directa con la turbiedad.

El subíndice de calidad para sólidos suspendidos se calcula como sigue:

$$I_{SST} = 1 - (-0.02 + 0.003 * SST)$$

Si
$$SST \le 4.5$$
, entonces $I_{SST} = 1$
Si $SST \ge 320$, entonces $I_{SST} = 0$

Demanda química de oxígeno DQO

Refleja la presencia de sustancias químicas susceptibles de ser oxidadas a condiciones fuertemente ácidas y alta temperatura, como la materia orgánica, ya sea biodegradable o no, y la materia inorgánica.

Mediante adaptación de la propuesta de la Universidad Politécnica de Catalunya se calcula con la fórmula:

Transmisora Colombiana de Energia S.A.S. E.S.P.

Proyecto Segundo refuerzo de red en el área oriental: Línea de transmisión La Virginia – Nueva Esperanza 500 kV - UPME 07 2016.

Si
$$DQO \le 20$$
, entonces $I_{DQO} = 0.91$
Si $20 < DQO \le 25$, entonces $I_{DQO} = 0.71$
Si $25 < DQO \le 40$, entonces $I_{DQO} = 0.51$
Si $40 < DQO \le 80$, entonces $I_{DQO} = 0.26$
Si $DQO > 80$, entonces $I_{DQO} = 0.125$

Conductividad eléctrica CE

Está relacionada con la presencia de sales en solución cuya disociación genera cationes y aniones capaces de transformar energía eléctrica. Refleja condiciones de mineralización. Se calcula como sigue:

$$I_{C.E.} = 1 - 10^{(-3.26 + 1.34 Log 10C.E)}$$

Cuando $I_{C.E.} < 0$, entonces $I_{C.E.} = 0$

pH

Mide el nivel de acidez o basicidad de las aguas; niveles extremos afectan los procesos de osmorregulación de la flora y fauna acuática.

Si
$$pH \le 4$$
, entonces $I_{pH} = 0.1$
Si $4 < pH \le 7$, entonces $I_{pH} = 0.02628419e^{(pH*0.520025)}$
Si $7 < pH \le 8$, entonces $I_{pH} = 1$
Si $8 < pH \le 11$, entonces $I_{pH} = 1 * e^{[(pH-8)*-5187742]}$
Si $pH > 11$, entonces $I_{pH} = 0.1$

Nitrógeno total/Fósforo tola NT/NP

Mide la degradación por intervención antrópica. Es una forma de aplicar el concepto de saprobiedad empleado para cuerpos de agua lénticos (ciénagas, lagos, etc.) como la posibilidad de la fuente de asimilar carga orgánica; es una relación que indica el balance de nutrientes para la productividad acuícola de las zonas inundables en los ríos neotropicales (desde el norte de Argentina hasta el centro de México.

La fórmula para calcular el subíndice de calidad para NT/PT es:

Si
$$15 \le NT/NP \le 20$$
, entonces $I_{NT/NP} = 0.8$
Si $10 < NT/NP < 15$, entonces $I_{NT/NP} = 0.6$
Si $5 < NT/NP \le 20$, entonces $I_{NT/NP} = 0.35$
Si $NT/NP \le 5$, 6 $NT/NP > 20$, entonces $I_{NT/NP} = 0.15$

Una vez obtenido el ICA se califica la calidad del agua de las corrientes superficiales, de acuerdo con la Tabla 5-9.

Tabla 5-9 Calificación de la calidad del agua

DESCRIPTOR	ÁMBITO NÚMERICO
BUENO	0.91-1.00
ACEPTABLE	0.71-0.90
REGULAR	0.51-0.71
MALO	0.26-0.50
MUY MALO	0-0.25

Fuente: (IDEAM, 2020)

Proyecto Segundo refuerzo de red en el área oriental: Línea de transmisión La Virginia – Nueva Esperanza 500 kV - UPME 07 2016.

El Índice de Calidad del agua permite caracterizar en forma general la calidad de las aguas superficiales, de tal forma que los procesos físicos, químicos o biológicos que indican alta contaminación de las aguas pueden ser descubiertos por otros que no sugieren contaminación alguna. De acuerdo con los resultados obtenidos para cada punto de monitoreo, el índice de calidad se encuentra en el rango "Regular".

Tabla 5-10 MA1 Quebrada San Juan Vereda Chicaque

VARIABLE	VALOR DEL INDICE	PONDERACION	VALOR
Índice OD	0.59	0.17	0.10
Índice SST	0.99	0.17	0.17
Índice DQO	0.26	0.17	0.04
Índice Conductividad	0.75	0.17	0.13
Índice N-P	0.15	0.17	0.03
Índice pH	1.00	0.15	0.15
Total		1	0.61

Fuente: SMAYTD Ltda. 2022

Tabla 5-11 MA4 Captación Comunidad Vereda Chicaque

Table 1 Time Capital	VALOR DEL		
VARIABLE	INDICE	PONDERACION	VALOR
Índice OD	0.65	0.17	0.11
Índice SST	0.981	0.17	0.17
Índice DQO	0.51	0.17	0.09
Índice Conductividad	0.87	0.17	0.15
Índice N-P	0.15	0.17	0.03
Índice pH	1.00	0.15	0.15
Total		1	0.69

Fuente: SMAYTD Ltda. 2022

En la Tabla 5-12 se presenta el Índice de Calidad de Agua – ICA para los puntos de monitoreo MA1 y MA4.

Tabla 5-12 Índice de calidad de agua (ICA)

CÓDIGO ESTACIÓN	NOMBRE ESTACIÓN	Caudal (I/s)	ICA	Calidad	Calidad
MA1	Quebrada San Juan Vereda Chicaque	0.017	0.61	Regular	Amarillo
MA4	Captación Comunidad Vereda Chicaque	1.61	0.69	Regular	Amarillo

Fuente: SMAYTD Ltda. 2022

La quebrada *San Juan* tiene una calidad de agua regular, que puede ser debido a vertimiento de aguas residuales domesticas de los predios aledaños.

El punto de captación de la comunidad de la vereda Chicaque presenta una calidad de agua regular; la vereda no posee un sistema de potabilización de agua; por lo tanto, es necesario durante la construcción de la torre 440N4 verificar la turbidez del agua.

Transmisora Colombiana de Energia S.A.S. E.S.P.

Proyecto Segundo refuerzo de red en el área oriental: Línea de transmisión La Virginia – Nueva Esperanza 500 kV - UPME 07 2016.

b. Índices de contaminación del agua (ICO)

Se efectuó una interpretación del estado de los cuerpos de agua a partir del cálculo de los índices de contaminación del agua (ICO) sobre los puntos de muestreo tenidos en cuenta (Ramírez et al., 1997). Para esto se tuvo en cuenta los resultados físicos-químicos y bacteriológicos obtenidos para cada uno de los puntos de monitoreo. Para el presente estudio se incluyen el índice de contaminación por sólidos suspendidos (ICOSUS), índice por contaminación por materia orgánica (ICOMO) e índice de contaminación por mineralización (ICOMI) los cuales relacionan las variables descritas en la Tabla 5-13.

Tabla 5-13 Variables fisicoquímicas y bacteriológicas tenidas en cuenta para la determinación de los índices de contaminación del agua (ICO)

ÍNDICES	VARIABLE	
	DBO ₅	
ICOMO	Coliformes Totales	
	Oxígeno Disuelto	
	Alcalinidad	
ICOMI	Dureza	
	Conductividad	
ICOSUS	Sólidos suspendidos	

Fuente: (Ramirez, Restrepo, & Viña, 1997)

Tabla 5-14 Interpretación resultado de índices

Table 3-14 interpretación resultado de indices		
RANGO	INTERPRETACIÓN	INDICADOR
0.0-0.2	Contaminación muy baja	Ninguno
0.2-0.4	Contaminación baja	Bajo
0.4-0.6	Contaminación media	Medio
0.6-0.8	Contaminación alta	Alto
0.8-1.0	Contaminación muy alta	Muy Alto

Fuente: (Ramirez, Restrepo, & Viña, 1997)

El ICOMO comprende la relación entre tres (3) variables fisicoquímicas (demanda bioquímica de oxígeno (DBO), coliformes totales y porcentaje de saturación de oxígeno), las cuales, en conjunto, recogen efectos distintos de la contaminación orgánica, el ICOSUS involucra solamente la concentración de sólidos suspendidos, que hacen referencia a los compuestos orgánicos e inorgánicos presentes en el agua, el ICOMI involucra la conductividad, Dureza Total y Alcalinidad.

ICOMO

Para este se emplea la ecuación:

$$ICOMO = 1/3 (IDBO + IColiformes totales + IOxígeno\%)$$

IDBO

$$IDBO = -0.05 + 0.70 Log_{10} DBO(\frac{g}{m3})$$

Nota: Para DBO > 30 g/m3 tiene IDBO= 1 y DBO < 2 g/m3 tiene IDBO= 0

Transmisora Colombiana de Energía S A S E S P

Proyecto Segundo refuerzo de red en el área oriental: Línea de transmisión La Virginia – Nueva Esperanza 500 kV - UPME 07 2016.

ICOLIFORMES TOTALES

$$ICOL_TOT = -1.44 + 0.56Log_{10}COL_TOT(NMP/100cm3)$$

Nota: Para Coliformes totales > 20000 NMP/100 cm3 tiene ICOL_TOT= 1 y Coliformes totales < 500 NMP/100 cm3 tiene ICOL_TOT = 0

IOXIGENO DISUELTO%

$$IOxigeno\% = 1 - 0.010xigeno\%$$

Nota: Para %OD > 100% tiene IOxigeno%= 0

ICOMI

Para este índice se emplea la siguiente ecuación:

$$ICOMI = 1/3 (IConductividad + IDureza + IAlcalinidad)$$

Para determinar los índices de conductividad, dureza y alcalinidad para hallar del índice de contaminación por mineralización ICOMI se emplean las siguientes ecuaciones:

IConductividad

$$Log_{10}$$
 IConductividad = $-3.26 + 1.34 Log_{10}$ Conductividad ($\frac{\mu S}{cm}$)

 $IConductividad = 10^{Log\ IConductividad}$

Nota: Conductividades mayores a 270 uS/cm, tiene un índice de conductividad de 1

IDureza

$$Log_{10} \, IDureza = -9.09 + 4.40 Log_{10} Dureza \, (\frac{g}{m^3})$$

 $IDureza = 10^{Log\ IDureza}$

Nota: Durezas mayores a 110 g/m3 tienen IDureza igual a 1 Durezas menores a 30 g/m3 tienen IDureza igual a 0

IAlcalinidad

$$IAlcalinidad = -0.25 + 0.005 Alcalinidad \left(\frac{g}{m^3}\right)$$

Nota: Alcalinidades mayores a 250 g/m3 tiene l'Alcalinidad igual a 1 Alcalinidades menores a 50 g/m3 tiene l'Acalinidad igual a 0

$$ICOSUS = -0.02 + 0.003 Solidos suspendidos \left(\frac{mg}{L}\right)$$

En la Tabla 5-15, se presentan los resultados de los valores de ICO para cada uno de los puntos monitoreados.

Transmisora Colombiana de Energia S.A.S. E.S.P.

Proyecto Segundo refuerzo de red en el área oriental: Línea de transmisión La Virginia – Nueva Esperanza 500 kV - UPME 07 2016.

Tabla 5-15 Índice de contaminación del agua (ICOSUS)

CÓDIGO ESTACIÓN	NOMBRE ESTACIÓN	ICOMO	ICOMI	ICOSUS
MA1	Quebrada San Juan Vereda Chicaque	0.16	0.09	<0.01
MA4	Captación Comunidad vereda Chicaque	-	-	0.019

Fuente: SMAYTD Ltda. 2022

Conocer el ICOMI de una fuente superficial es importante para conocer la capacidad que tiene el cuerpo hídrico en resistir mayores cambios de pH y el mantenimiento de los procesos biológicos, además de conocer el tipo de formación rocosa que caracteriza la geomorfología de los cuerpos hídricos.

En el punto de monitoreo MA1 se observó que el índice de contaminación por mineralización ICOMI, presentó contaminación muy baja por mineralización, lo que representa que el cuerpo de agua posee un buen sistema de amortiguación para este tipo de contaminación.

El índice de contaminación por materia orgánica ICOMO para la muestra se encuentra en grado de contaminación muy baja, indicando que la cantidad de materia orgánica degradada es acorde a la cantidad de oxígeno disuelto, sin ser capaz de agotarlo.

Los sólidos suspendidos, son un parámetro que está asociado con las sales inorgánicas contenidas en el agua superficial, con el material proveniente de la materia orgánica aportada por las aguas residuales y con material de arrastre propio de la geomorfología de la quebrada.

De acuerdo con el resultado obtenido el índice de ICOSUS se clasificó en grado de contaminación "muy baja" indicando que este cuerpo de agua no se encuentra afectado por sedimentación generada por actividades de origen antrópico, encontrando valores inferiores a 0.02 para los dos puntos de monitoreo (MA1 y MA4).

c. Índice de alteración potencial de la calidad del agua (IACAL)

El índice de alteración potencial de la calidad del agua es un reflejo de la vulnerabilidad a la contaminación a que puede estar sometida una subzona hidrográfica. Numéricamente corresponde al promedio de las categorías de clasificación asignadas a los cocientes que surgen de dividir las cargas estimadas de cada una de las cinco variables fisicoquímicas básicas seleccionadas y por la oferta hídrica superficial.

El recurso hídrico es vulnerable en cuanto a la afectación de su calidad, la cual se ve altamente influenciada por la variabilidad climática, dicha vulnerabilidad depende de la disponibilidad natural y/o regulada de dicho recurso, y de la presión ejercida sobre éste por cuenta de los usos y el consumo que realiza la población asentada en sus alrededores, y de los vertimientos que dicha población descarga en las corrientes. A medida que se incrementan las cargas vertidas por los diferentes sectores, se reduce la capacidad natural de autodepuración del sistema hídrico superficial que las recibe, se pierde su aptitud para ciertos usos específicos y se afecta la calidad de los beneficios ambientales que prestan estos sistemas hídricos.

Las fórmulas de cálculo del indicador son las siguientes (una para año medio y una para año seco):

Para año medio:

$$IACAL_{jt-a\~{n}omed} = \frac{\sum_{i=1}^{n} catiacal_{ijt-a\~{n}omed}}{n}$$

Donde:

Transmisora Colombiana de Energia S.A.S. E.S.P.

Proyecto Segundo refuerzo de red en el área oriental: Línea de transmisión La Virginia – Nueva Esperanza 500 kV - UPME 07 2016.

 $IACAL_{jt-a\|omed}$ Es el índice de alteración potencial de la calidad del agua de una subzona hidrográfica j durante el periodo de tiempo t, evaluado para una oferta hídrica propia de un año medio.

 $catiacal_{ijt-a\bar{n}omed}$ Es la categoría de clasificación de la vulnerabilidad por la potencial alteración de la calidad del agua que representa el valor de la presión de la carga estimada de la variable de calidad j, que se puede estar vertiendo a la subzona hidrográfica j, durante el período de tiempo t por la oferta hídrica propia de un año medio.

n Es el número de variables de calidad involucradas en el cálculo del indicador; n es igual a 5.

Para año seco:

$$IACAL_{jt-a\|oseco} = \frac{\sum_{i=1}^{n} catiacal_{ijt-a\|osec}}{n}$$

Donde:

 $IACAL_{jt-a\~{n}osec}$ Es el índice de alteración potencial de la calidad del agua de una subzona hidrográfica j durante el periodo de tiempo t, evaluado para una oferta hídrica propia de un año seco.

 $catiacal_{ijt-aar{n}osec}$ Es la categoría de clasificación de la vulnerabilidad por la potencial alteración de la calidad del agua que representa el valor de la presión de la carga estimada de la variable de calidad j, que se puede estar vertiendo a la subzona hidrográfica j, durante el período de tiempo t por la oferta hídrica propia de un año seco.

n Es el número de variables de calidad involucradas en el cálculo del indicador; n es igual a 5.

Tabla 5-16 Rangos de valores para índice IACAL

RANGOS	CATEGORIA DE CLASIFICACIÓN	CALIFICACIÓN DE LA PRESIÓN
$1.0 \leq IACAL \leq 1.5$	1	Baja
$1.5 < IACAL \le 2.5$	2	Moderada
$2.5 < IACAL \le 3.5$	3	Media Alta
$3.5 < IACAL \leq 4.5$	4	Alta
$4.5 < IACAL \le 5$	5	Muy Alta

Fuente: (IDEAM IACAL, 2020)

El indicador se calcula a partir de las estimaciones de cargas contaminantes de las siguientes variables: Demanda Bioquímica de Oxígeno (DBO), Demanda Química de Oxígeno (DQO), Sólidos Suspendidos Totales (SST), Fósforo Total (PT) y Nitrógeno Total (NT) que se pueden estar vertiendo a las corrientes superficiales de las 316 subzonas hidrográficas. Estas cargas son divididas por la oferta hídrica para año medio y año seco de cada una de las subzonas hidrográficas.

El cálculo de cada uno de los $iacal_{it-a\tilde{n}omed}$ se realiza mediante la siguiente fórmula general:

$$iacal_{ijt-a\~nomed} = \frac{C_{ijt}}{O_{a\~nomed}}$$

Donde:

Proyecto Segundo refuerzo de red en el área oriental: Línea de transmisión La Virginia – Nueva Esperanza 500 kV - UPME 07 2016.

 $iacal_{ijt-a\|omed}$ Son las estimaciones de las cargas de la variable de calidad i que se puede estar vertiendo a la subzona hidrográfica j durante el período de tiempo t dividido por la oferta hídrica estimada para un año medio.

 C_{ijt} Es la carga de la variable de calidad i que se puede estar vertiendo a la subzona hidrográfica j durante el período de tiempo t.

 $O_{a\~{n}omed}$ Es la oferta hídrica estimada para un año medio.

El IACAL es la suma de los catiacales de cargas contaminantes DBO, DQO, SST, NT y PT. Por otra parte, para el cálculo del CATIACAL se debe tomar las concentraciones del parámetro en (Ton/hm3) y se divide en el caudal igualmente en (Ton/hm3).

En la Tabla 5-17 hasta la Tabla 5-21 se presentan los rangos que han sido establecidos para comparar los valores de cada una de las variables de calidad.

Tabla 5-17 Rangos de valores que puede tomar IACALDBO

RANGOS	CATEGORIA DE CLASIFICACIÓN	CALIFICACIÓN DE LA PRESIÓN
$iacal_{DBO} < 0.14$	1	Baja
$0.14 \leq iacal_{DBO} < 0.4$	2	Moderada
$0.40 \leq iacal_{DBO} < 1.21$	3	Media Alta
$1.21 \leq iacal_{DBO} < 4.86$	4	Alta
$iacal_{DBO} \ge 4.86$	5	Muy Alta

Fuente: (IDEAM IACAL, 2020)

Tabla 5-18 Rangos de valores que puede tomar IACALDO

RANGOS	CATEGORIA DE CLASIFICACIÓN	CALIFICACIÓN DE LA PRESIÓN
$iacal_{DQO-DBO} < 0.14$	1	Baja
$0.14 \leq iacalDQO{DBO} < 0.36$	2	Moderada
$0.36 \le iacal_{DQO-DBO} < 1.17$	3	Media Alta
$1.17 \le iacal_{DQO-DBO} < 6.78$	4	Alta
$iacal_{DQO-DBO} \ge 6.78$	5	Muy Alta

Fuente: (IDEAM IACAL, 2020)

Tabla 5-19 Rangos de valores que puede tomar IACAL_{SST}

RANGOS	CATEGORIA DE CLASIFICACIÓN	CALIFICACIÓN DE LA PRESIÓN
$iacal_{SST} < 0.4$	1	Baja
$0.4 \leq iacal_{SST} < 0.8$	2	Moderada
$0.8 \leq iacal_{SST} < 1.9$	3	Media Alta
$1.9 \leq iacal_{SST} < 7.7$	4	Alta
$iacal_{SST} \ge 7.7$	5	Muy Alta

Fuente: (IDEAM IACAL, 2020)

Proyecto Segundo refuerzo de red en el área oriental: Línea de transmisión La Virginia – Nueva Esperanza 500 kV - UPME 07 2016.

Tabla 5-20 Rangos de valores que puede tomar IACAL_{NT}

RANGOS	CATEGORIA DE CLASIFICACIÓN	CALIFICACIÓN DE LA PRESIÓN
$iacal_{NT} < 0.03$	1	Baja
$0.03 \leq iacal_{NT} < 0.06$	2	Moderada
$0.06 \leq iacal_{NT} < 0.14$	3	Media Alta
$0.14 \leq iacal_{NT} < 0.56$	4	Alta
$iacal_{NT} \geq 0.56$	5	Muy Alta

Fuente: (IDEAM IACAL, 2020)

Tabla 5-21 Rangos de valores que puede tomar IACALPT

RANGOS	CATEGORIA DE CLASIFICACIÓN	CALIFICACIÓN DE LA PRESIÓN
$iacal_{PT} < 0.0005$	1	Baja
$0.005 \leq iacal_{PT} < 0.014$	2	Moderada
$0.014 \leq iacal_{PT} < 0.036$	3	Media Alta
$0.036 \leq iacal_{PT} < 0.135$	4	Alta
$iacal_{PT} \geq 0.135$	5	Muy Alta

Fuente: (IDEAM IACAL, 2020)

Para la Modificación No. 2 de Licencia Ambiental otorgada mediante Resolución No. 170 del 15 de enero de 2021 perteneciente al Proyecto UPME 07-2016 «Segundo Refuerzo de Red en el Área Oriental: Línea de transmisión La Virginia – Nueva Esperanza 500 kV» el proyecto UPME 07 de 2016 ninguna de las fuentes hídricas presentes en el área de influencia del proyecto, incluyendo las que fueron monitoreadas serán intervenidas por el proyecto mediante captaciones, vertimientos u ocupaciones de cauce.

La estimación del índice de alteración potencial del agua (IACAL) se reporta tomando como base la información del POMCA del río Bogotá para las subcuencas Río Medio Bogotá (Sector Salto – Apulo) y Río Bogotá (Sector Soacha – Salto).

En las Tabla 5-22 se presenta la oferta hídrica para año medio y seco.

Tabla 5-22 Oferta hídrica

Tabla 3-22 Oferta marica					
AÑO	MEDIO	SECO			
NOMBRE CÓDIGO		Mm3 AÑO MEDIO	Mm3 AÑO SECO		
Río Medio Bogotá (Sector Salto - Apulo)	2120-03	124.8	110.4		
Río Bogotá (Sector Soacha - Salto)	2120-04	43.3	26.7		

Fuente: (POMCA RÍO BOGOTÁ, 2017)

Tabla 5-23 Categorías IACAL para año medio

SUBCUENCA	DBO	DQO-DBO	SST	NT	PT
Sector Salto – Apulo	Muy Alta	Muy Alta	Alta	Muy Alta	Alta
Sector Soacha – Salto	Muy Alta				

Fuente: (POMCA RÍO BOGOTÁ, 2017)

Proyecto Segundo refuerzo de red en el área oriental: Línea de transmisión La Virginia – Nueva Esperanza 500 kV - UPME 07 2016.

Tabla 5-24 Categorías IACAL para año seco

SUBCUENCA	DBO	DQO-DBO	SST	NT	PT
Sector Salto – Apulo	Muy Alta	Muy Alta	Alta	Muy Alta	Alta
Sector Soacha - Salto	Muy Alta				

Fuente: (POMCA RÍO BOGOTÁ, 2017)

Tabla 5-25 Calificación IACAL año Medio y Seco

SUBCUENCA	IACAL MEDIO	IACAL SECO
Sector Salto – Apulo	Muy Alta	Muy Alta
Sector Soacha – Salto	Muy Alta	Muy Alta

Fuente: (POMCA RÍO BOGOTÁ, 2017)

Las subcuencas del río Bogotá Sector Salto-Apulo y Soacha-Salto presentan una presión muy alta (IACAL) como consecuencia de los altos niveles de cargas contaminantes vertidas a los cuerpos de agua tanto para año medio como seco. Con una probabilidad muy alta a la contaminación a los cuerpos de agua en condiciones de lluvia y en un año seco.

