CAPÍTULO 5. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA

5.1 MEDIO ABIÓTICO

5.1.10 GEOTECNIA

COMPLEMENTO DEL ESTUDIO DE IMPACTO AMBIENTAL- MODIFICACIÓN 2 LICENCIA AMBIENTAL RESOLUCIÓN No. 170 / 2021- INFORMACIÓN ADICIONAL

Proyecto Segundo refuerzo de red en el área oriental: Línea de transmisión La Virginia – Nueva Esperanza 500 kV

UPME 07 2016

TCE-ET2W-GPB00-0003-1

	Control de Cambios SN	MAYD LTDA
FECHA	VERSIÓN	DESCRIPCIÓN
13/03/2022	V0A	Versión inicial
16/04/2022	VF	Versión final
01/10/2022	VF2	Versión final con ajustes
ELABORADO POR:	REVISADO POR:	APROBADO POR:
Grupo interdisciplinario SMAYD LTDA	A. Fajardo	A. Fajardo
	Control de Revisione	es TCE
FECHA	VERSIÓN	DESCRIPCIÓN
02/10/2022	V2	Aprobada
-	-	
ELABORADO POR:	REVISADO POR:	APROBADO POR:
SMAYD LTDA	L. Barragán; N. Rojas	E. Bordignon

Segundo Refuerzo de Red en el Área Oriental: Línea de transmisión La Virginia – Nueva Esperanza 500kV - UPME 07-2016

CONTENIDO

5. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA	4
5.1. Medio Abiótico	4
5.1.10 Geotecnia	4
5.1.10.1 Zonificación Geotécnica en el área de estudio	4
5.1.10.1.1 Variable Geomorfología (GM)	5
5.1.10.1.2 Variable Pendientes (PT)	6
5.1.10.1.3 Variable Cobertura vegetal (CV)	8
5.1.10.1.4 Variable Litología (L)	9
5.1.10.1.5 Variable Sismicidad (SM)	10
5.1.10.1.6 Variable Meteorológica – Precipitación	11
5.1.10.1.7 Mapa de Zonificación Geotécnica	13
5.1.10.2 Estudio Geotécnico	14
5.1.10.2.1 Parámetros Geotécnicos	15
5.1.10.2.2 Capacidad Portante	16
5.1.10.2.3 Procesos de inestabilidad	17
5.1.10.3 Conclusiones y recomendaciones	18
6. REFERENCIAS BIBLIOGRAFICAS	19

Segundo Refuerzo de Red en el Área Oriental: Línea de transmisión La Virginia – Nueva Esperanza 500kV - UPME 07-2016

ÍNDICE DE TABLAS

Tabla 5-1 Relación Susceptibilidad – Estabilidad Geotécnica	4
Tabla 5-2 Tabla de Unidades Geomorfológicas en el área del proyecto y peso en la Zonificación Geo	
Tabla 5-3 Relación Inclinación – Estabilidad – Peso	
Tabla 5-4 Tabla de coberturas en el área de influencia de paisaje	ε
Tabla 5-5 Unidades geológicas identificadas en el área del Proyecto y su peso en la clasi Geotécnica	ficación ç
Tabla 5-6 Valores de aceleración sísmica y peso en la clasificación geotécnica	10
Tabla 5-7 Relación Precipitación – Estabilidad- Peso	12
Tabla 5-8 Zonificación Geotecnia Área de Estudio	14
Tabla 5-9 Resultado Ensayo de laboratorio Estudio de Suelos parte A	14
Tabla 5-10 Resultado Ensayo de laboratorio Estudio de Suelos parte B	15
Tabla 5-11 Parámetros de diseño y tipo de cimentación	16
Tabla 5-12 Capacidad portante	17
ÍNDICE DE FIGURAS	
Figura 5-1 Estabilidad geotécnica en función de la variable de geomorfología	6
Figura 5-2 Estabilidad geotécnica en función de la variable pendientes	7
Figura 5-3 Estabilidad geotécnica en función de la variable Cobertura de la Tierra	8
Figura 5-4 Estabilidad geotécnica en función de la variable Litología	10
Figura 5-5 Estabilidad geotécnica en función de la variable Sismicidad	11
Figura 5-6 Estabilidad geotécnica en función de la variable meteorología	12
Figura 5-7 Mapa de Zonificación Geotécnica en el área de influencia de la modificación No. 2	13

ÍNDICE DE ANEXOS

A5.1.10 Geotecnia

- 1. Evaluación condiciones estabilidad
- 2. Estudio de Suelos y Geología

Segundo Refuerzo de Red en el Área Oriental: Línea de transmisión La Virginia – Nueva Esperanza 500kV - UPME 07-2016

5. CARACTERIZACIÓN DEL ÁREA DE INFLUENCIA

5.1. Medio Abiótico

5.1.10 Geotecnia

Las zonas montañosas tropicales son muy susceptibles a sufrir problemas de inestabilidad geotécnica debido a que generalmente se reúnen cuatro de los elementos más importantes para su ocurrencia, tales como son la topografía, la sismicidad, la meteorización y lluvias intensas. A continuación, se presenta el análisis de estabilidad geotécnica para el área de influencia de la Modificación No.2 de la Licencia Ambiental otorgada mediante Resolución No. 170 de 2021 al proyecto "Segundo refuerzo de red en el área oriental: Línea de transmisión La Virginia – Nueva Esperanza 500 kV UPME 07 2016".

5.1.10.1 Zonificación Geotécnica en el área de estudio

La metodología utilizada para la elaboración del mapa de estabilidad geotécnica es una modificación de la metodología propuesta por Ambalagan (1992), aplicada para el área de Estudio. Es un método heurístico para determinar la susceptibilidad de un área determinada a la ocurrencia de un fenómeno de remoción en masa, que puede ser interpretado como un grado de amenaza por fenómenos de remoción en masa.

La caracterización geotécnica consiste en identificar los factores más relevantes que afectan la estabilidad de la zona, asignarles valores numéricos y un peso según la naturaleza de la zona y el punto de vista profesional.

Cada factor se representa por medio de un mapa o figura, compuesta por polígonos que contienen los valores asignados para las diferentes variables identificadas. Finalmente se realiza una superposición cartográfica, que resulta en una sumatoria de valores por polígono, donde los valores más altos, representan áreas de menor estabilidad geotécnica.

La sumatoria corresponde específicamente a:

Valor total = Valor (Geomorfología) + Valor (Pendientes) + Valor (Cobertura Vegetal) + Valor (Litología) + Valor (Sismicidad) + Valor (Meteorología)

Se clasifican entonces, desde este enfoque las áreas en cuatro categorías de estabilidad geotécnica: Muy Alta, Media a Alta, Media a Baja y Baja; los límites de los rangos se definen con base en el valor total de las variables analizadas y se ajustan según el criterio y experiencia del profesional, ya que deben reflejar las condiciones reales observadas en campo.

Tabla 5-1 Relación Susceptibilidad - Estabilidad Geotécnica

SUSCEPTIBILIDAD A PRESENTAR EVENTOS DE REMOCIÓN EN MASA	RANGO DE VALORES	ESTABILIDAD GEOTÉCNICA
Muy baja	0,0 – 1,5	Muy alta
Baja	1,6 – 3,0	Media a Alta
Moderada	3,1 – 4,5	Media a Baja
Alta	4,6 - 6,0	Baja

Fuente: Modificado de Ambalagan 1992 en Suárez 2001

Transmisora

Segundo Refuerzo de Red en el Área Oriental: Línea de transmisión La Virginia – Nueva Esperanza 500kV - UPME 07-2016

Las variables que se contemplaron para determinar la estabilidad geotécnica fueron, cobertura vegetal, geomorfología, pendientes, litología, sismicidad y precipitación. A cada atributo de las variables se le asignaron pesos de acuerdo con su incidencia en la estabilidad. El valor dado a cada uno de los atributos varía de 0 a 1, siendo 1 el valor más alto para los atributos con mayor peso. Una vez definida la valoración se aplica la siguiente fórmula:

 $Estabilidad_Geot\'ecnica = \sum (Geomorfolog\'ia, Pendiente, Cobertura, Litolog\'ia, Sismicidad, Meteorolog\'ia).$

A continuación, se describen las variables utilizadas y la valoración asignada para el área de interés:

5.1.10.1.1 Variable Geomorfología (GM)

Corresponde a la descripción de las formas del terreno por su génesis y dinámica, se presentan unidades geomorfológicas con variaciones en su grado de estabilidad.

A nivel regional la geomorfología dominante corresponde a zonas montañosas separadas por un valle interandino. A nivel local se diferencian escarpes rocosos, laderas denudadas, colinas disectadas y de relieves rugosos, montañas controladas por pliegues y fallas, conos volcánicos, áreas de depósitos aluviales, lahares, lomeríos y colinas redondeadas, entre otros, que representan la interacción entre los procesos geológicos tectónicos, agradacionales y denudacionales, creando formas particulares sobre la topografía de un terreno.

Las unidades geomorfológicas con valores altos generalmente son aquellas que presentan procesos morfodinámicos importantes como fenómenos de remoción en masa, reptación, flujo de detritos y erosión en estado avanzado, afectadas generalmente por fallas, mientras que los valores bajos están asociados a geoformas con baja influencia a ser denudadas. En la Tabla 5-2 se relacionan las unidades geomorfológicas identificadas para el área de estudio (Figura 5-1).

Tabla 5-2 Tabla de Unidades Geomorfológicas en el área del proyecto y peso en la Zonificación Geotécnica

UNIDAD GEOMORFOLÓGICA	PESO	ÁREA (HA)	ÁREA (%)
Espinazos	0,9	45,17	6,91
Cerros Residuales	0.7	1,62	0,25
Cuestas	0,7	74,63	11,41
Sierras homoclinales	0,7	417,39	63,81
Glasis	0.6	14,58	2,23
Plataformas de abrasión elevadas	0.5	15,96	2,44
Sierras glaciadas	0.4	39,87	6,10
Terrazas fluviales	0.3	29,80	4,56
Llanura de inundación	0.2	13,96	2,13
Embalses	0.2	1,08	0,17
TOTAL GENERAL		654,07	100,00

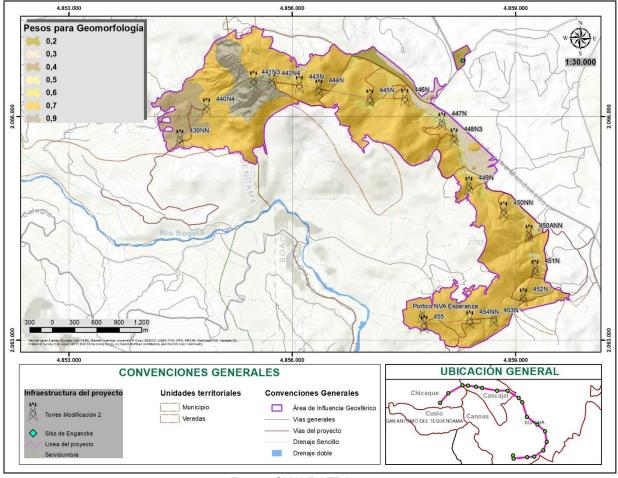


Figura 5-1 Estabilidad geotécnica en función de la variable de geomorfología

Fuente: SMAYD LTDA., 2022

5.1.10.1.2 Variable Pendientes (PT)

La zona de interés presenta pendientes desde bajas hasta muy fuertes. Cabe mencionar que las pendientes juegan un rol importante en la estabilidad del terreno; ya que las pendientes altas generan altas probabilidades de deslizamientos. En muchas ocasiones, la estabilidad geotécnica de un área está determinada por la existencia de fenómenos de remoción en masa donde el principal agente detonador es la gravedad, por tanto, altos valores en pendientes son comúnmente asociados este tipo de fenómenos.

En la Tabla 5-3 se muestran los porcentajes de pendiente y el respectivo peso para la zonificación geotécnica en el área del proyecto (Figura 5-2).

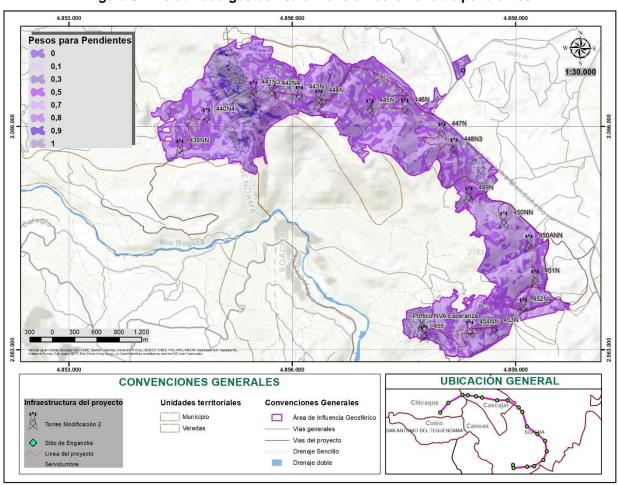


Tabla 5-3 Relación Inclinación - Estabilidad - Peso

INCLIN	ACIÓN	DESCRIPCIÓN PE		ÁREA (HA)	ÁREA (%)
PORCENTAJE	GRADOS	DESCRIPCION	PESO	AREA (HA)	AREA (%)
0 – 1%	0,00° - 0,57°	A nivel	0.0	1,87	0,29
1 – 3%	0,57° - 1,71°	Ligeramente plana	0.0	4,41	0,67
3 – 7%	1,71° - 4,01°	Ligeramente inclinada	0.1	30,21	4,62
7 – 12%	4,01° - 6,84°	Moderadamente inclinada	0.3	62,83	9,61
12 – 25%	6,84° - 14,04°	Fuertemente inclinada	0.5	200,80	30,70
25 – 50%	14,04° - 26,57°	Ligeramente escarpada	0.7	257,16	39,32
50 – 75%	26,57° - 36,87°	Moderadamente escarpada	0.8	50,78	7,76
75 – 100%	36,87° - 45,00°	Fuertemente escarpada	0.9	18,41	2,81
>100 %	>100 % > 45,00° Totalmente escarpada		1.0	27,61	4,22
	TOTAL	GENERAL		654,07	100,00

Fuente: SMAYD LTDA., 2022

Figura 5-2 Estabilidad geotécnica en función de la variable pendientes

5.1.10.1.3 Variable Cobertura vegetal (CV)

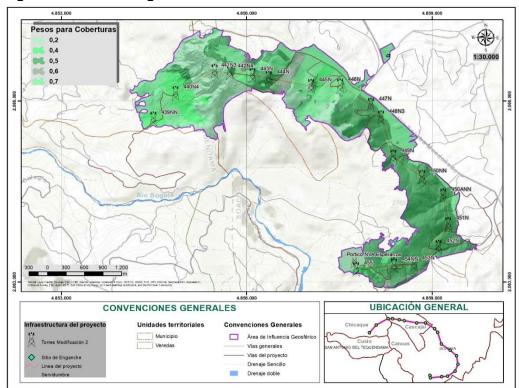

La cobertura vegetal se refiere a la superficie terrestre con vegetación natural que comprende biomasas con diferentes características fisionómicas y ambientales, las cuales van desde pastizales hasta bosques; así mismo se incluyen coberturas antropizadas, tales como cultivos y pastos para ganadería. En la *Tabla* 5-4 se presentan las coberturas de la tierra en el área del proyecto (Figura 5-3).

Tabla 5-4 Tabla de coberturas en el área de influencia de paisaje

COBERTURAS	PESO	ÁREA (HA)	ÁREA (%)
Bosque denso alto	0,2	51,61	7,89
Bosque denso bajo	0,2	57,90	8,85
Cuerpos de agua artificiales	0,5	1,08	0,17
Otros cultivos transitorios	0,6	15,58	2,38
Pastos arbolados	0,4	57,68	8,82
Pastos enmalezados	0,6	13,18	2,02
Pastos limpios	0,8	166,22	25,41
Plantación de latifoliadas	0,5	207,92	31,79
Red vial y terrenos asociados	0,2	1,83	0,28
Vegetación secundaria alta	0,5	61,52	9,41
Vegetación secundaria baja	0,5	6,86	1,05
Zonas industriales	0,2	12,68	1,94
TOTAL GENERAL		654,07	100

Fuente: SMAYD LTDA., 2022

Figura 5-3 Estabilidad geotécnica en función de la variable Cobertura de la Tierra

Segundo Refuerzo de Red en el Área Oriental: Línea de transmisión La Virginia – Nueva Esperanza 500kV - UPME 07-2016

5.1.10.1.4 Variable Litología (L)

Con base en la caracterización geológica realizada para el área de estudio, son valorados los materiales que tienen mayor facilidad a generar deslizamientos, con el fin de obtener el análisis integrado de la zona, de igual forma se tienen en cuenta las estructuras y unidades geológicas principales que están involucradas en cada uno de los campos y las características propias de la zona que aportan estabilidad o inestabilidad en el análisis puntual; se valoran los materiales que poseen mayor facilidad a generar deslizamientos con un mayor peso.

En este sentido, rocas masivas intrusivas y competentes tienen calificaciones bajas, rocas sedimentarias consolidadas tienen una calificación media, mientras que depósitos de gravas no consolidados y rocas físiles las más altas (Tabla 5-5 y Figura 5-4).

Tabla 5-5 Unidades geológicas identificadas en el área del Proyecto y su peso en la clasificación Geotécnica

UNIDAD GEOLOGICA	NOMENCLATURA	PESO	ÁREA (HA)	ÁREA (%)
Formación Chía	Q2ch	0,8	11,95	1,83
Formación Conejo	K2c / Kscn	0,8	6,05	0,93
Depósito Aluvial	Qal / Qsch	0,8	1,35	0,21
Depósitos Fluvioglaciares	Q2c / Qflg	0,8	55,46	8,48
Formación Río Tunjuelito	Q1tu	0,7	15,92	2,43
Formación Arenisca Dura	K2d / Ksgd	0,6	264,50	40,44
Formación Guaduas	K2E1g	0,6	6,73	1,03
Formación Labor y Tierna	K2t / Kslt	0,6	28,13	4,30
Formación Plaeners	K2p / Ksgpl	0,5	244,38	37,36
Formación Tilatá	N2t / NgQt	0,5	19,59	2,99
TOTAL GENERA	L		654,07	100,00

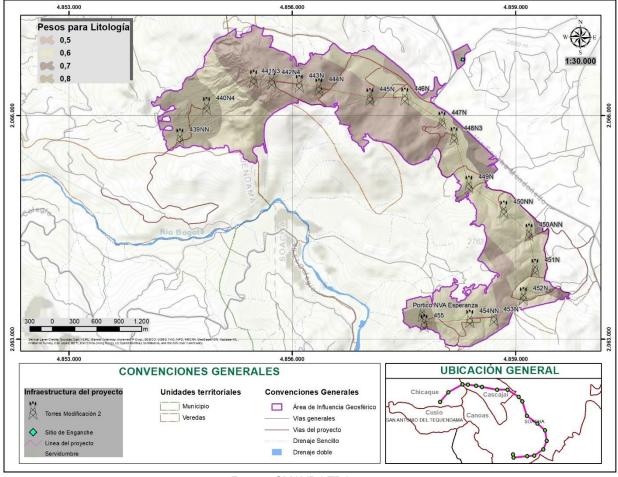


Figura 5-4 Estabilidad geotécnica en función de la variable Litología

Fuente: SMAYD LTDA., 2022

5.1.10.1.5 Variable Sismicidad (SM)

La amenaza sísmica en esta zona se estima a partir del MAPA NACIONAL DE AMENAZA SÍSMICA PERIODO DE RETORNO 475 AÑOS producido por INGEOMINAS y LA UNIVERSIDAD NACIONAL DE COLOMBIA (2010), sede Bogotá, arroja un valor medio de aceleración horizontal máximo en roca PGA (que representa un modelo probabilístico que podría interpretarse como la ocurrencia de sismos en Colombia) entre el rango de 0 PGA (cm/s2) a un máximo de 400, por lo cual existe una probabilidad media de ocurrencia como amenaza natural en el área de estudio. En la Tabla 5-6 se presenta el valor de aceleración sísmica identificado para el área de estudio y su peso en la clasificación geotécnica (Figura 5-5).

Tabla 5-6 Valores de aceleración sísmica y peso en la clasificación geotécnica

Valor de Aceleración Sísmica del Área	ESTABILIDAD	PESO	ÁREA (HA)	ÁREA (%)	
0.20	Intermedia	0,4	654,07	100,00	

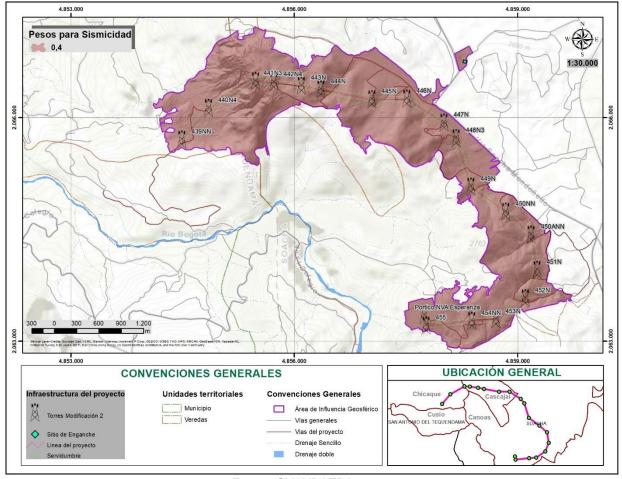


Figura 5-5 Estabilidad geotécnica en función de la variable Sismicidad

Fuente: SMAYD LTDA., 2022

5.1.10.1.6 Variable Meteorológica – Precipitación

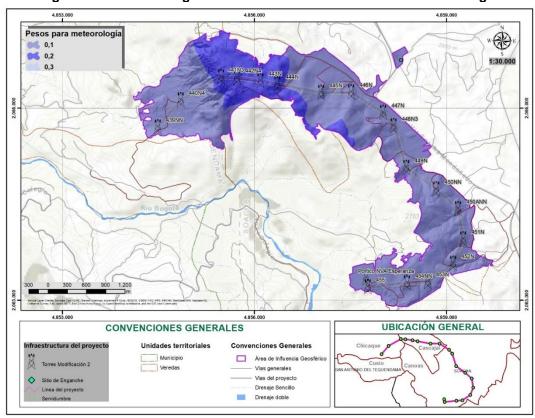
La precipitación es un proceso mediante el cual el agua cae a la superficie y su formación requiere la elevación de una masa de agua en la atmosfera de tal manera que se enfríe y parte de su humedad se condense, siendo uno de los componentes principales del balance hídrico, por aportar el agua que alimenta la red de drenaje tanto superficial como subterránea (Marín, 2002). A continuación, se relacionan los principales factores que originan la lluvia en el área de estudio:

Factores de Tipo Convectivo: Son causados principalmente por el fuerte calentamiento de la superficie terrestre debido a la radiación solar, generalmente en días de poca nubosidad y alto contenido de humedad en la atmosfera, de manera que la cantidad de lluvia es alta y localizada.

Vientos Alisios: Los vientos alisios según el área que afecten, se clasifican en vientos de superficie, locales de montaña, locales de valle o de altitud. El área donde convergen es la denominada ZCIT, que, por la posición geográfica de Colombia, es clasificada bajo la influencia de los vientos alisios de los dos hemisferios NE y SE caracterizados por su sequedad, especialmente hacia el oriente del país.

Transmisora Colombiana

Segundo Refuerzo de Red en el Área Oriental: Línea de transmisión La Virginia – Nueva Esperanza 500kV - UPME 07-2016


"De acuerdo con Oster, R. (1979), citado en ESTINCO (1988) la variación dentro del año de la precipitación media está regida por los dos (2) tránsitos que hace el cinturón de Convergencia Intertropical -CIT- sobre la costa norte colombiana; por su posición al norte del Ecuador es más notorio el paso del segundo semestre creando un tiempo ciclónico, cubierto, lluvioso y fresco, opuesto al tiempo anticiclónico que antecede o sigue a las depresiones de la CIT, que es un tiempo soleado, seco y con contrastes en la amplitud diurna de las temperaturas más marcados".

Desde el punto de vista de análisis de la Estabilidad Geotécnica la precipitación juega un papel importante, ya que esta incide directamente en la cohesión de la estructura del suelo, en litologías arcillosas donde puede aumentar su volumen por la capacidad de expansión, en litologías arenosas por acelerar el procesos de meteorización de la roca o en rocas duras donde por el peso o gravedad del agua, puede ejercer fuerzas en fallas o diaclasas, que generen focos erosivos que pueden evolucionar a fenómenos de remoción en masa. En la Tabla 5-7, se presentan los rangos de precipitación para el área de estudio y el peso asignado para la zonificación geotécnica y los mapas intermedios generados (Figura 5-6).

Tabla 5-7 Relación Precipitación - Estabilidad- Peso

Table 6 7 Relacion 1 recipitation Established 1 esc								
PRECIPITACIÓN (mm)	PESO	ÁREA (HA)	ÁREA (%)					
600 -1000	0,1	533,93	81,63					
800 - 1200	0,2	119,95	18,34					
800 - 1400	0,3	0,19	0,03					
TOTAL GENERAL	654,07	100,00						

Figura 5-6 Estabilidad geotécnica en función de la variable meteorología

5.1.10.1.7 Mapa de Zonificación Geotécnica

Para el área de interés se determinó la susceptibilidad a deslizamientos y su correlación en términos de estabilidad geotécnica; la valoración se realizó en función de la estabilidad, es decir si un factor favorece la estabilidad su peso es menor y si contribuye a la inestabilidad su peso es mayor, la asignación de valores es por tanto subjetiva y depende de la experiencia y el criterio cada uno de los profesionales de las áreas que intervienen en el presente análisis. En términos generales el área de estudio refleja zonas de estabilidad media a baja, zonas de estabilidad media a alta y zonas de estabilidad muy alta (*Figura 5-7*).

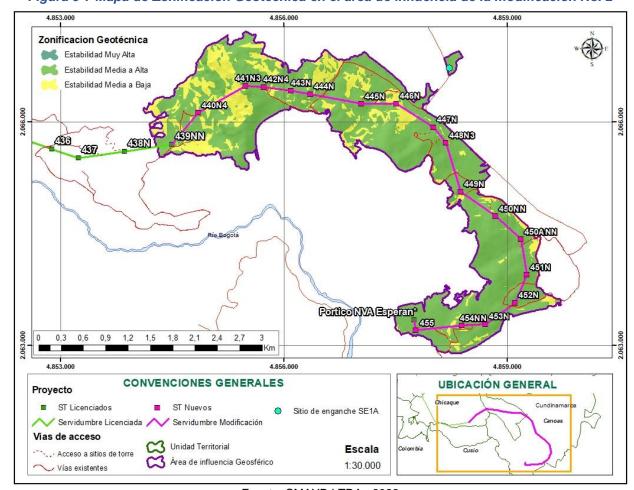


Figura 5-7 Mapa de Zonificación Geotécnica en el área de influencia de la modificación No. 2

Fuente: SMAYD LTDA., 2022

En la *Tabla 5-8*, se presentan los resultados de la zonificación geotécnica del área de estudio. Las zonas de muy alta estabilidad representan el 0,01% del área de estudio y se localizan principalmente en inmediaciones de la vía de acceso a la vereda Cascajal, que presenta pendiente inferior al 3%.

Las zonas de estabilidad media a alta representan la mayor parte del área de estudio (80,36%) y son zonas donde existen rocas competentes, generalmente intrusivas, poco afectadas por procesos denudacionales y zonas de fallas, de pendientes bajas generalmente menores a 25%, con una cobertura vegetal arbórea principalmente.

Transmisora Colombiana de Energia S.A.S. E.S.P.

Segundo Refuerzo de Red en el Área Oriental: Línea de transmisión La Virginia – Nueva Esperanza 500kV - UPME 07-2016

Las zonas de estabilidad media a baja representan el 19,63% del área de estudio y están relacionadas con rocas fracturadas o físiles como las del Grupo Villeta y Complejo Cajamarca, con pendientes mayores a 25% y con geoformas de origen denudacional, estructural.

Tabla 5-8 Zonificación Geotecnia Área de Estudio

NOMBRE	AREA (Ha)	PORCENTAJE (%)
Estabilidad Muy Alta	0,06	0,01
Estabilidad Media a Alta	525,59	80,36
Estabilidad Media a Baja	128,41	19,63
TOTAL	654,07	100

Fuente: SMAYD LTDA., 2022

5.1.10.2 Estudio Geotécnico

A continuación, se presentan en resumen los resultados de los ensayos de clasificación y propiedades índices elaborados. La Tabla 5-9 y Tabla 5-10 presenta el número identificador de torre, referencia de muestra, la profundidad inicial y final (en metros), porcentajes de gravas, arenas y finos, humedad natural, valores en porcentaje del límite líquido, límite plástico, índice de plasticidad, el valor del índice de liquidez y clasificación. El detalle de esta información se encuentra disponible en el Anexo 5.1.10 Geotecnia / Estudio de suelos y geología (INGEDISA S.A., 2022).

Tabla 5-9 Resultado Ensayo de laboratorio Estudio de Suelos parte A

TORRE	Defense	Profunidad	(m)	Gra	nulome	tria	M (0/)		Limites			SUCS
TORKE	Referencia	Inicio	Fin	G(%)	A(%)	F(%)	W (%)	LL	LP	IP	IL	3003
439NN	SPTM2	1	1,5	0,00	0,00	100	63	102	54	48	0,18	ОН
439NN	SPTM3	2	2,5	49,00	28,00	23	13	NL	NP	0	-	GM
446N 01	M01	0,00	0,50	-	10	90	21,69	53	24	29	-0,1	CH
446N 01	M02	0,50	0,70	1	49	51	9,46	0	0	0	-0,5	ML
446N 02	M01	0,00	0,70	-	11	89	19,9	47	23	24	-0,1	CL
447N 01	M02	0,50	1,00	-	13	87	18,83	59	24	36	-0,1	CH
447N 01	M03	1,00	1,50	-	0	100	22,97	78	25	54	0	CH
447N 02	M01	0,00	0,50	-	12	88	21,41	60	29	32	-0,2	CH
447N 02	M02	0,50	1,00	1	14	86	19	60	23	37	-0,1	CH
448N3 01	M02	0,50	1,00	-	33	67	11,3	29	20	9	-1	CL
448N3 01	M03	1,00	1,50	-	14	86	20,25	56	19	38	0	CH
448N3 02	M01	0,00	0,50	-	25	75	14,75	38	16	22	-0,1	CL
448N3 02	M02	0,50	1,00	-	28	72	7,91	31	14	16	-0,4	CL
449N 01	M02	0,40	0,90	-	19	81	18,26	67	26	40	-0,2	CH
449N 01	M03	0,90	1,40	-	25	75	16,88	54	16	38	0	СН
449N 02	M01	0,00	0,50	-	10	90	25,66	65	22	42	0,1	CH
449N 02	M03	1,00	1,50	•	14	86	20,25	56	19	38	0	CH
450NN 01	M02	0,50	1,00	-	15	85	14,61	52	23	30	-0,3	CH
450NN 01	M03	1,00	1,15	•	21	79	15,19	70	23	47	-0,2	CH
450NN 02	M01	0,00	0,60	-	16	84	10,19	34	20	14	-0,7	CL

Fuente: Tomado de "Informe de suelos y geología" (INGEDISA S.A., 2022)

Tabla 5-10 Resultado Ensayo de laboratorio Estudio de Suelos parte B

TORRE	Referencia	Profunidad	(m)	Granulometria			1A/ (Q/)	Limites				cuce
		Inicio	Fin	G(%)	A(%)	F(%)	W (%)	LL	LP	IP	IL	SUCS
450ANN	M02	0,40	0,90	-	21	79	60,37	33	13	20	2,4	CL
450ANN	M03	0,90	1,40	-	12	88	14,92	41	18	24	-0,1	CL
450ANN	M04	1,40	1,90	-	7	93	14,59	42	16	26	-0,1	CL
450ANN	M05	2,40	2,90	-	16	84	10,68	36	14	23	-0,1	CL
451N 01	M01	0,00	0,35	-	25	75	9,73	33	18	14	-0,6	С
451N 01	M02	0,35	0,65	-	11	89	15,13	39	18	21	-0,2	CL
451N 02	M01	0,00	0,65	-	23	77	12,73	47	22	25	-0,4	CL
452N 01	M01	0,00	0,90	-	6	94	16,79	53	22	31	-0,2	CH
452N 02	M03	1,00	1,50	-	12	88	42,27	104	65	39	-0,6	MH
453N 01	M03	1,00	1,50	-	12	88	42,27	104	65	39	-0,6	MH
453N 01	M04	2,00	2,50	-	23	77	25,43	111	35	76	-0,1	CH
453N 02	M02	0,50	1,00	-	9	91	60,37	112	67	45	-0,2	MH
453N 03	M03	1,50	2,00	-	8	92	23,35	49	22	27	0,1	CL
454NN	0,5	1,00	-	8	92	72,81	116	68	47	0,1	МН	МН
454NN	1	1,50	-	14	86	61,12	73	46	27	0,5	MH	MH
454NN	1,5	2,00	-	45	55	14,82	29	15	14	0	CL	CL
454NN	2,5	3,00	-	45	55	27,93	37	16	22	0,6	CL	CL
455	M02	0,50	1,00	-	32	68	20,7	64	20	44	0	СН
455	M06	3,60	4,10	-	10	90	36,17	65	20	45	0,4	CH
455	M08	5,20	6,00	-	16	84	26,22	52	19	33	0,2	СН

Fuente: Tomado de "Informe de suelos y geología" (INGEDISA S.A., 2022)

En la Tabla 5-9 y Tabla 5-10 se presenta el índice de liquidez (IL), también conocido como la Relación Agua - Plasticidad. El IL es el índice utilizado para medir a escala el contenido de humedad natural de una muestra de suelo, respecto de los límites líquido y plástico (indirectamente sirve para tener una medida aproximada de la resistencia del material). El IL compara el contenido natural de humedad que presenta un suelo en el campo con LL y LP, y es un excelente indicador de la historia geológica y las propiedades relativas del suelo.

Adicionalmente, contribuye a evaluar el grado de desecación comparativo en diferentes muestras de suelo, reduciendo la variación debida a la litología, al escalar el contenido de humedad respecto de la plasticidad. También, el índice de liquidez IL, refleja los efectos del contenido de humedad sobre una muestra de suelo remoldeada y saturada, expresándose por lo general en porcentaje y pudiéndose utilizar para evaluar el comportamiento de un depósito de suelo si este se encuentra alterado.

5.1.10.2.1 Parámetros Geotécnicos

Se presenta a continuación el análisis geotécnico desarrollado para las obras relacionadas con la construcción de la línea de trasmisión La Virginia – Nueva Esperanza en el sector de la Modificación No. 2. De manera general, se presenta el análisis de las cimentaciones tanto superficiales como profundas, teniendo en cuenta la condición seca y sumergida, y módulos de reacción del suelo, tanto vertical como horizontal según sea el caso.

Se presentan las generalidades del análisis de capacidad portante para cada una de las torres, así como recomendación del tipo de cimentación de acuerdo con la geología, geomorfología, tipo de comportamiento y propiedades del material encontrado en cada una de las torres.

Transmisora Colombiana de Energia S.A.S. E.S.P.

Segundo Refuerzo de Red en el Área Oriental: Línea de transmisión La Virginia – Nueva Esperanza 500kV - UPME 07-2016

En la Tabla 5-11 se indica una profundidad mínima de cimentación para cada una de las estructuras, basado en los resultados del ensayo SPT y el perfil estratigráfico encontrado en cada una de las estructuras. En algunos casos se presentan estratos resistentes superficiales, pero debido a condiciones de topografía, unidad geológica y/o localización de la estructura la profundidad de la cimentación puede ser mayor.

Tabla 5-11 Parámetros de diseño y tipo de cimentación

Torre	Comport,	Prof, Min Cohesion		Angulo de	Tipo de	Peso especifico	
Totle	Comport,	de cim, (m)	(kPa)	friccion (ª)	cimentacio	(Kn/M3)	
439NN	Granular	1,5	0	35	Superficial	16	
440N4*	Cohesivo	0,5	135	0	Superficial	15	
441N3*	Cohesivo	0,85	135	0	Superficial	16	
442N4*	Cohesivo	0,85	135	0	Superficial	16	
443N*	Cohesivo	0,85	135	0	Superficial	16	
444N*	Cohesivo	0,85	135	0	Superficial	16	
445N*	Cohesivo	0,5	135	0	Superficial	17	
446N	Cohesivo	0,5	135	0	Superficial	17	
447N	Cohesivo	0,5	135	0	Superficial	15	
448N3	Cohesivo	0,5	135	0	Superficial	17	
449N	Cohesivo	1	135	0	Superficial	15	
450NN	Cohesivo	1	135	0	Superficial	16	
450ANN	Cohesivo	0,9	135	0	Superficial	16	
451N	Cohesivo	0,35	135	0	Superficial	16	
452N	Cohesivo	0,5	135	0	Superficial	17	
453N	Cohesivo	2	46	0	Superficial	15	
454NN	Cohesivo	1,5	135	0	Superficial	16	
455	Cohesivo	5,2	51	0	Profunda	15	

Fuente: Tomado de "Informe de suelos y geología" (INGEDISA S.A., 2022)

5.1.10.2.2 Capacidad Portante

Los resultados obtenidos para el análisis de capacidad portante para cimentaciones con zapatas aisladas, suponiendo un ancho de zapata $B=2.0\,m$, y tres diferentes niveles de desplante se indican en la siguiente Tabla (Tabla 5-12). Se presentan condiciones tanto secas como sumergidas, teniendo en cuenta que en los suelos cohesivos (condiciones no drenadas) la capacidad es la misma en los dos casos. Adicionalmente se calculan los asentamientos esperados.

Transmisora Colombiana de Energía S.A.S. E.S.P.

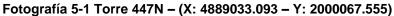
Segundo Refuerzo de Red en el Área Oriental: Línea de transmisión La Virginia – Nueva Esperanza 500kV - UPME 07-2016

Tabla 5-12 Capacidad portante

Torre	Comport	nport γ (kN/m3)	Su (kPa)	Ф' (°)	q admin (Kpa)			q adminsum(Kpa)			Asentamientos
Torre Compo	Comport				Df=2	Df=3	Df=4	Df=2	Df=3	Df=4	(mm)
439NN	Granular	16	0	37	841	1184	1526	421	592	763	4,42
440N4*	Cohesivo	15	135	0	633	638	643	627	629	630	16,53
441N3*	Cohesivo	16	135	0	597	602	607	590	592	594	19,85
442N4*	Cohesivo	16	135	0	597	602	607	590	592	594	19,85
443N*	Cohesivo	16	135	0	597	602	607	590	592	594	19,85
444N*	Cohesivo	16	135	0	597	602	607	590	592	594	19,85
445N*	Cohesivo	17	135	0	629	635	640	622	625	627	9,47
446N	Cohesivo	17	135	0	629	635	640	622	625	627	9,47
447N	Cohesivo	15	135	0	633	638	643	627	629	630	16,53
448N3	Cohesivo	17	135	0	685	691	697	678	681	683	16,53
449N	Cohesivo	15	135	0	461	466	471	455	457	458	24,48
450NN	Cohesivo	16	135	0	506	512	517	500	502	504	13,92
450ANN	Cohesivo	16	135	0	734	739	744	727	729	731	24,48
451N	Cohesivo	16	135	0	650	656	661	644	646	648	24,48
452N	Cohesivo	17	135	0	481	487	492	475	477	479	24,48
453N	Cohesivo	15	46	0	113	118	122	106	108	109	24,48
454NN	Cohesivo	16	135	0	583	589	594	577	579	581	5,38
455	Cohesivo	15	51	0	123	128	133	117	118	120	26,16

Fuente: Tomado de "Informe de suelos y geología" (INGEDISA S.A., 2022)

5.1.10.2.3 Procesos de inestabilidad


Proceso de estabilidad entendiendo como la pérdida del equilibrio de la masa de suelo de las laderas naturales o intervenidas, movimientos motivados por factores relacionados con: composición y fabrica textural, estructuras geológicas, degradabilidad de materiales geológicos, precipitaciones, sísmico entre otros.

En los puntos de cimentación de la torre 447N, durante la visita de campo realizada por el equipo de profesionales, se presencia la manifestación clara de un proceso de inestabilidad, evidenciado el desprendimiento de material en la corona a ambos costados del sitio de torre (Fotografía 5-1y Fotografía 5-2).

La torre se encuentra localizadas sobre la unidad geológica formación arenisca dura y ladera estructural de sierra homoclinal. Estos terrenos presentan pendientes desde muy inclinadas a escarpadas, de longitudes moderadas a extremadamente largas, de formas planas, cóncavas y convexas, patrón de drenaje típico dendrítico a subparalelo.

Fuente: SMAYD LTDA., 2022

Fotografía 5-2 Torre 447N - (X: 4889033.093 - Y: 2000067.555)

Fuente: SMAYD LTDA., 2022

5.1.10.3 Conclusiones y recomendaciones

Se sugiere validar las condiciones y estado de las laderas de la Torre 447N, específicamente en los puntos de cimentación localizados en las coordenadas señaladas en la Fotografía 5-1 y Fotografía 5-2, puesto que se identifica rangos característicos de procesos de inestabilidad que involucra un área importante de la zona de la localización de la torre. Lo anterior, con la finalidad de proponer obras de contención, en caso de ser necesario.

Segundo Refuerzo de Red en el Área Oriental: Línea de transmisión La Virginia – Nueva Esperanza 500kV - UPME 07-2016

6. REFERENCIAS BIBLIOGRAFICAS

EIA TCE. (2019). Geotecnia. Proyecto de segundo refuerzo de red en el área oriental: Línea de Transimisión La Virginia - Nueva Esperanza 500 kV.

INGEDISA S.A. (2022). Informe de estudio de suelos y geología.

SMAYD LTDA. (2022). Segundo Refuerzo de Red en el Área Oriental: Línea de transmisión La Virginia – Nueva Esperanza 500kV - UPME 07 2016. Bogotá DC: SMAYD LTDA.

